synapses = weights = parameters
neurons = features = activations

since each padding increases both the height and width by two, we add $2p$

1. **Zero Padding**: pads input boundaries with zero.
1. $h_o = h_i + 2p -k_h + 1 = h_i - k_h + 1$
2. Other Paddings: **Reflection Padding, Replication Padding** …
Receptive Field $L \cdot (k - 1) + 1$ (정확하게 이해 안 됨)

Grouped Convolution Layer: reduces the weights

Depthwise Convolution Layer $g = c_i = c_o$ each output channel is connected to only one input channel; extreme case of group convolution layer
Pooling Layer: downsamples the feature map to smaller size
Normalization Layer: Normalize the feature map for faster and more effecient calculation
Activation Function