All resources(e.g. lecture slides) in here.
Lecture 1. Introduction
Lecture 2: Imitation Learning
Lecture 3. PyTorch and Neural Nets
Lecture 4. Introduction to Reinforcement Learning
Lecture 5. Policy Gradients
Lecture 6. Actor-Critic Algorithms
Lecture 7. Value Function Methods
Lecture 8. Deep RL with Q-Functions
Lecture 10. Optimal Control and Planning
Lecture 13. Exploration (Pt.1)